Zinc Finger Protein

A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions(Zn2+) in order to stabilize the fold. Originally coined to describe the finger-like appearance of a hypothesized structure from Xenopus laevis transcription factor IIIA, the zinc finger name has now come to encompass a wide variety of differing protein structures.[1] Xenopus laevis TFIIIA was originally demonstrated to contain zinc and require the metal for function in 1983, the first such reported zinc requirement for a gene regulatory protein.[2][3]

Proteins that contain zinc fingers (zinc finger proteins) are classified into several different structural families. Unlike many other clearly defined supersecondary structures such as Greek keys or β hairpins, there are a number of types of zinc fingers, each with a unique three-dimensional architecture.

A particular zinc finger protein’s class is determined by this three-dimensional structure, but it can also be recognized based on the primary structure of the protein or the identity of the ligands coordinating the zinc ion. In spite of the large variety of these proteins, however, the vast majority typically function as interaction modules that bind DNA, RNA, proteins, or other small, useful molecules, and variations in structure serve primarily to alter the binding specificity of a particular protein.

Since their original discovery and the elucidation of their structure, these interaction modules have proven ubiquitous in the biological world and may be found in 3% of the genes of the human genome.[4]

In addition, zinc fingers have become extremely useful in various therapeutic and research capacities. Engineering zinc fingers to have an affinity for a specific sequence is an area of active research, and zinc finger nucleases and zinc finger transcription factorsare two of the most important applications of this to be realized to date.

References

  1. Klug A, Rhodes D (1987). “Zinc fingers: a novel protein fold for nucleic acid recognition”. Cold Spring Harbor Symposia on Quantitative Biology. 52: 473–82. doi:10.1101/sqb.1987.052.01.054. PMID 3135979.
  2. ^ Hanas JS, Hazuda DJ, Bogenhagen DF, Wu FY, Wu CW (December 1983). “Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene”. The Journal of Biological Chemistry. 258 (23): 14120–5. PMID 6196359.
  3. ^ Berg JM (April 1990). “Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules”. The Journal of Biological Chemistry. 265 (12): 6513–6. PMID 2108957.
  4. ^ Jump up to: a b c d Klug A (2010). “The discovery of zinc fingers and their applications in gene regulation and genome manipulation”. Annual Review of Biochemistry. 79: 213–31. doi:10.1146/annurev-biochem-010909-095056. PMID 20192761. – via Annual Reviews (subscription required)

Happiness Medicine & Holistic Medicine Posts

Categories

Translate:

Translate »
error: Content is protected !!