Cannabis Sativa in Historical and Botanical Perspective

One of the earliest domesticated plant species, Cannabis sativa L. (marijuana, hemp; Cannabaceae) has been used for millennia as a source of fibre, oil- and protein-rich achenes (“seeds”) and for its medicinal and psychoactive properties. From its site of domestication in Central Asia, the cultivation of cannabis spread in ancient times throughout Asia and Europe and is now one of the most widely distributed cultivated plants [1].

Hemp fibre was used for textile production in China more than 6000 years BP (before present) [2]. Archaeological evidence for the medicinal or shamanistic use of cannabis has been found in a 2700-year old tomb in north-western China and a Judean tomb from 1700 years BP [3, 4].

Currently cannabis and its derivatives such as hashish are the most widely consumed illicit drugs in the world [5]. Its use is also increasingly recognized in the treatment of a range of diseases such as multiple sclerosis and conditions with chronic pain [6, 7]. In addition, hemp forms of cannabis are grown as an agricultural crop in many countries.

Cannabis is an erect annual herb with a dioecious breeding system, although monoecious plants exist. Wild and cultivated forms of cannabis are morphologically variable, resulting in confusion and controversy over the taxonomic organization of the genus (see [8] for review). Some authors have proposed a monotypic genus, C. sativa, while others have argued that Cannabis is composed of two species, Cannabis sativa and Cannabis indica, and some have included a third species, Cannabis ruderalis, in the genus. In light of the taxonomic uncertainty, we use C. sativa to describe the plants analyzed in this study.

The unique pharmacological properties of cannabis are due to the presence of cannabinoids, a group of more than 100 natural products that mainly accumulate in female flowers (“buds”) [9, 10]. Δ9-Tetrahydrocannabinol (THC) is the principle psychoactive cannabinoid and the compound responsible for the analgesic, antiemetic and appetite-stimulating effects of cannabis [11, 12]. Non-psychoactive cannabinoids such as cannabidiol (CBD), cannabichromene (CBC) and Δ9-tetrahydrocannabivarin (THCV), which possess diverse pharmacological activities, are also present in some varieties or strains [13, 14, 15].

Cannabinoids are synthesized as carboxylic acids and upon heating or smoking decarboxylate to their neutral forms; for example, Δ9-tetrahydrocannabinolic acid (THCA) is converted to THC. Although cannabinoid biosynthesis is not understood at the biochemical or genetic level, several key enzymes have been identified including a candidate polyketide synthase and the two oxidocyclases, THCA synthase (THCAS) and cannabidiolic acid (CBDA) synthase, which form the major cannabinoid acids [16, 17, 18].

Cannabinoid content and composition is highly variable among cannabis plants. Those with a high-THCA/low-CBDA chemotype are termed marijuana, whereas those with a low-THCA/high-CBDA chemotype are termed hemp. There are large differences in the minor cannabinoid constituents within these basic chemotypes. Breeding of cannabis for use as a drug and medicine, as well as improved cultivation practices, has led to increased potency in the past several decades with median levels of THC in dried female flowers of ca. 11% by dry weight; levels in some plants exceed 23% [10, 19]. This breeding effort, largely a covert activity by marijuana growers, has produced hundreds of strains that differ in cannabinoid and terpenoid composition, as well as appearance and growth characteristics. Patients report medical marijuana strains differ in their therapeutic effects, although evidence for this is anecdotal.

Cannabis has a diploid genome (2n = 20) with a karyotype composed of nine autosomes and a pair of sex chromosomes (X and Y). Female plants are homogametic (XX) and males heterogametic (XY) with sex determination controlled by an X-to-autosome balance system [20]. The estimated size of the haploid genome is 818 Mb for female plants and 843 Mb for male plants, owing to the larger size of the Y chromosome [21]. The genomic resources available for cannabis are mainly confined to transcriptome information: NCBI contains 12,907 ESTs and 23 unassembled RNA-Seq datasets of Illumina reads [22, 23]. Neither a physical nor a genetic map of the cannabis genome is yet completely available but different scientists have estimated its transcriptome  to more than 30,000 genes.

Reference Notes

1Schultes RE, Klein WM, Plowman T, Lockwood TE: Cannabis: an example of taxonomic neglect. Bot Mus Leafl Harvard Univ. 1974, 23: 337-367.Google Scholar

2Li HL: An archaeological and historical account of cannabis in China. Econ Bot. 1973, 28: 437-444. 10.1007/BF02862859.View ArticleGoogle Scholar

3Russo EB, Jiang H-E, Li X, Sutton A, Carboni A, Bianco F del, Mandolino G, Potter DJ, Zhao Y-X, Bera S, Zhang Y-B, Lü E-G, Ferguson DK, Hueber F, Zhao L-C, Liu C-J, Wang Y-F, Li C-S: Phytochemical and genetic analyses of ancient cannabis from Central Asia. J Exp Bot. 2008, 59: 4171-4182. 10.1093/jxb/ern260.PubMedPubMed CentralView ArticleGoogle Scholar

4Zias J, Stark H, Sellgman J, Levy R, Werker E, Breuer A, Mechoulam R: Early medical use of cannabis. Nature. 1993, 363: 215-PubMedGoogle Scholar

5UNODC: World Drug Report. 2011, United Nations Publication, Sales No. E.11.XI.10Google Scholar

6Ware MA, Wang T, Shapiro S, Robinson A, Ducruet T, Huynh T, Gamsa A, Bennett GJ, Collet J-P: Smoked cannabis for chronic neuropathic pain: a randomized controlled trial. CMAJ. 2010, 182: E694-701. 10.1503/cmaj.091414.PubMedPubMed CentralView ArticleGoogle Scholar

7Lakhan SE, Rowland M: Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review. BMC Neurol. 2009, 9: 59-10.1186/1471-2377-9-59.PubMedPubMed CentralView ArticleGoogle Scholar

8Hillig K: Genetic evidence for speciation in Cannabis (Cannabaceae). Genet Resourc Crop Evol. 2005, 52: 161-180. 10.1007/s10722-003-4452-y.View ArticleGoogle Scholar

9Elsohly MA, Slade D: Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 2005, 78: 539-548. 10.1016/j.lfs.2005.09.011.PubMedView ArticleGoogle Scholar

10Mehmedic Z, Chandra S, Slade D, Denham H, Foster S, Patel AS, Ross SA, Khan IA, ElSohly MA: Potency trends of Δ9-THC and other cannabinoids in confiscated cannabis preparations from 1993 to 2008. J Forensic Sci. 2010, 55: 1209-1710. 10.1111/j.1556-4029.2010.01441.x.PubMedView ArticleGoogle Scholar

11Gaoni Y, Mechoulam R: Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc. 1964, 86: 1646-1647. 10.1021/ja01062a046.View ArticleGoogle Scholar

12Joy JE, Watson SJ, Benson JA, (eds.): Marijuana and Medicine: Assessing the Science Base. 1999, National Academies PressGoogle Scholar

13Mechoulam R: Plant cannabinoids: a neglected pharmacological treasure trove. Br J Pharmacol. 2005, 146: 913-915. 10.1038/sj.bjp.0706415.PubMedPubMed CentralView ArticleGoogle Scholar

14DeLong GT, Wolf CE, Poklis A, Lichtman AH: Pharmacological evaluation of the natural constituent of Cannabis sativa, cannabichromene and its modulation by Δ9-tetrahydrocannabinol. Drug Alcohol Depend. 2010, 112: 126-133. 10.1016/j.drugalcdep.2010.05.019.PubMedPubMed CentralView ArticleGoogle Scholar

15Izzo AA, Borrelli F, Capasso R, Marzo V Di, Mechoulam R: Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci. 2009, 30: 515-527. 10.1016/ ArticleGoogle Scholar

16Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y, Taura F: The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Δ1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J Biol Chem. 2004, 279: 39767-39774. 10.1074/jbc.M403693200.PubMedView ArticleGoogle Scholar

17Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S: Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett. 2007, 581: 2929-2934. 10.1016/j.febslet.2007.05.043.PubMedView ArticleGoogle Scholar

18Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S: Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett. 2009, 583: 2061-2066. 10.1016/j.febslet.2009.05.024.PubMedView ArticleGoogle Scholar

19Potter D, Clark P, Brown M: Potency of Δ9-THC and other cannabinoids in cannabis in England in 2005: Implications for psychoactivity and pharmacology. J Forensic Sci. 2008, 53: 90-94. 10.1111/j.1556-4029.2007.00603.x.PubMedView ArticleGoogle Scholar

20Ming R, Bendahmane A, Renner SS: Sex chromosomes in land plants. Ann Rev Plant Biol. 2011, 62: 485-514. 10.1146/annurev-arplant-042110-103914.View ArticleGoogle Scholar

21Sakamoto K, Akiyama Y, Fukui K, Kamada H, Satoh S: Characterization; genome sizes and morphology of sex chromosomes in hemp (Cannabis sativa L.). Cytologia. 1998, 63: 459-464. 10.1508/cytologia.63.459.View ArticleGoogle Scholar

22NCBI database search October 12, 2011.Google Scholar

23Marks MD, Tian L, Wenger JP, Omburo SN, Soto-Fuentes W, He J, Gang DR, Weiblen GD, Dixon RA: Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J Exp Bot. 2009, 60: 3715-2610. 10.1093/jxb/erp210.PubMedPubMed CentralView ArticleGoogle Scholar


Happiness Medicine & Holistic Medicine Posts



Translate »
error: Content is protected !!